2.2 THE DERIVATIVE AS A FUNCTION

FIGURE I

Position function of a car

- The units for acceleration are feet per second per second, written as $\mathrm{ft} / \mathrm{s}^{2}$.

EXAMPLE A A car starts from rest and the graph of its position function is shown in Figure 1, where s is measured in feet and t in seconds. Use it to graph the velocity and acceleration of the car. What is the acceleration at $t=2$ seconds?

SOLUTION By measuring the slope of the graph of $s=f(t)$ at $t=0,1,2,3,4$, and 5, and using the method of Example 1, we plot the graph of the velocity function $v=f^{\prime}(t)$ in Figure 2. The acceleration when $t=2 \mathrm{~s}$ is $a=f^{\prime \prime}(2)$, the slope of the tangent line to the graph of f^{\prime} when $t=2$. We estimate the slope of this tangent line to be

$$
a(2)=f^{\prime \prime}(2)=v^{\prime}(2) \approx \frac{27}{3}=9 \mathrm{ft} / \mathrm{s}^{2}
$$

Similar measurements enable us to graph the acceleration function in Figure 3.

FIGURE 2
Velocity function

FIGURE 3
Acceleration function

